
Pawn

embedded scripting language

Script Arguments Support Library

August 2006

Abstract
The “Script Arguments Support Library” provides func-
tions to general purpose command line parsing to a pawn

script. The “command line” options may either come from
the host program’s actual command line (the default), or
from a pseudo command line that the host program pro-
vides to the scripts.

The software that is associated with this application note
can be obtained from the company homepage, see section
“Resources”

Introduction . 1

Command line syntax .1
Implementing the library . 2

Usage .4

Native functions . 5

Resources .7

Index . 9

ITB CompuPhase

ii

“Microsoft” and “Microsoft Windows” are registered trademarks of Microsoft Corporation.

“Linux” is a registered trademark of Linus Torvalds.

“CompuPhase” is a registered trademark of ITB CompuPhase.

Copyright c© 2005–2011, ITB CompuPhase; Eerste Industriestraat 19–21, 1401VL
Bussum, The Netherlands (Pays Bas); telephone: (+31)-(0)35 6939 261
e-mail: info@compuphase.com, WWW: http://www.compuphase.com

The information in this manual and the associated software are provided “as is”.
There are no guarantees, explicit or implied, that the software and the manual
are accurate.

Requests for corrections and additions to the manual and the software can be
directed to ITB CompuPhase at the above address.

Typeset with TEX in the “Computer Modern” and “Palatino” typefaces at a base size of 11 points.

1

Introduction

The Script Arguments Support Library enables scripts or pawn programs to ac-
cept options from a general purpose “options line” that the host program supplies,
or from the command line of the host program itself. Using this support library,
the host program may allow pawn scripts to browse through the options with
which the host program itself was started and to select and process a subset of
these options. This makes it especially convenient for a host application to forward
command line options to a script of which it has no intrinsic support itself. The
host program may also choose an alternative (and specific) way to pass options
to a script.

This appendix assumes that the reader understands the pawn language. For
more information on pawn, please read the manual “The pawn booklet — The
Language” which is available from the site www.compuphase.com.

Command line syntax

The Script Arguments Support Library supports command lines where options
are separated with white space (space characters, tab characters). The library
does not mandate a specific option character. On some platforms, the default
command line may have limited length —for example, on DOS the command line
is limited to 127 characters. A host application may overcome this limitation by
calling the function amx_ArgsSetCmdLine, see page 2.

When options contain space characters, they must be quoted. To quote an option,
enclose the entire option between double quotes. For example, to pass an option
with the name -prompt and the value hello world, the option would be:

"-prompt=hello world"

When searching through the command line for options, the functions split an
optional value for the option from the name. In the above example, the name of
the option is “-prompt” and the value is “hello world”. The separator between
the name and the value of the option is an equal sign (“=”). On unix/Linux
platforms, the colon (“:”) may also be used to separate values from names. On
Microsoft Windows and DOS, the colon is disabled (as a separator) by default,
but a host application may enable it by (re-)building the library —see the option
AMXARGS_COLON on page 2.

2

Implementing the library

The Script Arguments Support library consists of this document and the files
amxargs.c and args.inc. The C file may be “linked in” to a project that
also includes the pawn abstract machine (amx.c), or it may be compiled into a
DLL (Microsoft Windows) or a shared library (Linux). The .inc file contains the
definitions for the pawn compiler of the native functions in amxargs.c. In your
pawn programs, you may either include this file explicitly, using the #include

preprocessor directive, or add it to the “prefix file” for automatic inclusion into
any pawn program that is compiled.

The “Implementer’s Guide” for the pawn toolkit gives details for implementing
the extension module described in this application note into a host application.
The initialization function, for registering the native functions to an abstract
machine, is amx_ArgsInit and the “clean-up” function is amx_ArgsCleanup. In
the current implementation, calling the clean-up function is not required.

If the host application supports dynamically loadable extension modules, you may
alternatively compile the C source file as a DLL or shared library. No explicit
initialization or clean-up is then required. Again, see the Implementer’s Guide for
details.

The C source code allows some configuration through preprocessor macros that
can be specified as compiler/build options:

⋄ The preprocessor macro AMXARGS_COLON may be set to 0 or 1 (zero or one);
when 1, argument values may be separated from the option name with a colon
(as well as with an equal sign). By default, colon separators are allowed on
Linux, but not on Microsoft Windows and DOS. On Windows and DOS, a
colon is also used in path names (the “drive” identifier), so using it as a name/
value separator in an option may not be advisable.

⋄ The preprocessor macro AMXARGS_SKIPARG may be set to 0 or 1 (zero or one)
to optionally skip the first option on the “command line”. The first option may
be the name of the pawn script (this is common if the host application takes
the name of the script as the first parameter). By default, the first option is
not ignored.

The default operation of the extension module is that it retrieves the command
line options of the host program, so that the script can look up options that have
a meaning for the script. A host program may also choose to build up a command
line for the script with different options than those on the command line. In this

Implementing the library � 3

case, the host program must pass the argument list to the extension module via
function amx_ArgsSetCmdLine. The prototype for the function is:

int amx_ArgsSetCmdLine(const TCHAR *cmdline);

The function returns zero on success and an error code on failure. The parameter
cmdline is a pointer to either a “char” string or a “wchar_t” string, depending
on whether the library was compiled with Unicode support. Unicode support is
only available in the Microsoft Windows build. The host application must not

delete this buffer until the script(s) using the command line interface have all
finished —the extension module does not make a copy of the input parameter.

4

Usage

Depending on the configuration of the pawn compiler, you may need to explicitly
include the args.inc definition file. To do so, insert the following line at the top
of each script:

#include <args>

The angle brackets “<...>” make sure that you include the definition file from
the system directory, in the case that a file called args.inc or args.pawn also
exists in the current directory.

From that point on, the native functions from the script argument support library
are available. Below is an example program that prints all options passed to it on
the console:

Listing: argument.p

#include <args>

main()

{

printf "Argument count = %d\n", argcount()

new opt{100}

for (new index = 0; argindex(index, opt); index++)

printf "Argument %d = %s\n", index, opt

}

The Script Arguments Support library supports, in its default configuration, the
options on the command line of the host application. In this context, there will
probably be a mix of options for the script and options for the host application
itself on the command line. That is, not every option on the command line makes
sense for the script. Rather than browsing through all options on the command
line, it may be more convenient to “search” for any/all applicable options.

The library provides two native functions that allow to search for options. Both
return true if the option exists and false if the option does not occur. If the
option consists of a name/value pair, the functions split the value off the name
and return it in a separate parameter. The difference between the two functions is
that one of the two returns the “value” part as a text string and the other returns
it as a numeric value. See the descriptions for argstr and argvalue for details.

5

Native functions

argcount()
Returns the number of arguments on the command line.

bool:argindex(index, value[], maxlength=sizeof value, bool:pack=true)
Looks up the indexed argument and stores it (if found) in the parameter
value. The parameter index starts at zero for the first argument. The
argument can be stored as a packed or an unpacked string; the parameter
pack indicates whether packing is enabled.

Returns true on success and false on failure or if the parameter index
is out of range.

bool:argstr(index=0, const option[]="", value[]="", maxlength=sizeof value, bool:pack=true)
Looks up a named option and splits of a value of the option, if any.
The parameter index must be zero (0) to find the first occurrence of the
option; when set to one (1) or higher to find for the second, third, . . .
occurrences of the named option. When the parameter option matches
multiple arguments on the command line, the index parameter, then,
enables to browse through them.

If a command line argument contains a “=” or a “:”, the part to the left of
the option is matched —it must include any “option character”, such as
a “-” or “/”; otherwise the entire argument is matched against the name
“option”. If option is an empty string, it will only match arguments
without an “=” (or “:”).

The parameter value is not modified if the option is not found. If the
option was found, but contained no value, parameter value is set to an
empty string.

Returns true if the option was found and false otherwise.

bool:argvalue(index=0, const option[]="", &value=cellmin)
Looks up a named option and splits of a value of the option, if any.
The parameter index must be zero (0) to find the first occurrence of the
option; when set to one (1) or higher to find for the second, third, . . .
occurrences of the named option. When the parameter option matches
multiple arguments on the command line, the index parameter, then,
enables to browse through them.

6 � Native functions

If a command line argument contains a “=” or a “:”, the part to the left of
the option is matched —it must include any “option character”, such as
a “-” or “/”; otherwise the entire argument is matched against the name
“option”. If option is an empty string, it will only match arguments
without an “=” (or “:”).

The parameter value is not modified if the option is not found. If the
option was found, but contained no value or no numeric value, parameter
value is not changed from the input —this allows you to store a default
value into the output parameter (parameter value) before the call.

Returns true if the option was found and false otherwise.

7

Resources

The pawn toolkit can be obtained from www.compuphase.com in various for-
mats (binaries and source code archives). The manuals for usage of the language
and implementation guides are also available on the site in Adobe Acrobat format
(PDF files).

8 � Resources

9

Index

⋄ Names of persons (not products) are in italics.
⋄ Function names, constants and compiler reserved words are in typewriter

font.

! #include, 2

A Abstract Machine, 2
Adobe Acrobat, 7
argcount, 5
argindex, 5
argstr, 5
argvalue, 5

D DLL, 2

H Host application, 2

L Linux, 1, 2

M Microsoft Windows, 1, 2

N Native functions, 2
registering, 2

P Prefix file, 2
Preprocessor directive, 2

R Registering, 2

S Shared library, 2

U Unicode, 3

	Introduction
	Command line syntax

	Implementing the library
	Usage
	Native functions
	Resources
	Index

