
Pawn

embedded scripting language

Fixed Point Support Library

August 2006

Abstract
The “pawn” programming language has only native sup-
port for 32-bit integers. This document describes an exten-
sion to the pawn run-time environment that adds support
for “fixed point” rational values.

The software that is associated with this application note
can be obtained from the company homepage, see section
“Resources”

Introduction . 1
Implementing the library . 4
Usage .5
Native functions . 6
Custom operators . 10
Resources .11
Index . 13

ITB CompuPhase

ii

“Microsoft” and “Microsoft Windows” are registered trademarks of Microsoft Corporation.

“Linux” is a registered trademark of Linus Torvalds.

“CompuPhase” is a registered trademark of ITB CompuPhase.

Copyright c© 2003–2011, ITB CompuPhase; Eerste Industriestraat 19–21, 1401VL
Bussum, The Netherlands (Pays Bas); telephone: (+31)-(0)35 6939 261
e-mail: info@compuphase.com, WWW: http://www.compuphase.com

The information in this manual and the associated software are provided “as is”.
There are no guarantees, explicit or implied, that the software and the manual
are accurate.

Requests for corrections and additions to the manual and the software can be
directed to ITB CompuPhase at the above address.

Typeset with TEX in the “Computer Modern” and “Palatino” typefaces at a base size of 11 points.

1

Introduction

The “pawn” programming language is a simple C-like extension/scripting lan-
guage. The only data type that it supports is a 32-bit integer, called a cell . The
pawn programming language is described in its manual and it is freely available;
see the section “Resources” for more information. This Fixed Point support li-
brary adds “fixed point decimal arithmetic” and fixed point rational values to the
“pawn” programming language.

In computer applications, rational values have limited precision, regardless of how
they are implemented. The advantage of fixed point arithmetic over the more
common floating point arithmetic is that fixed point defines the precision in an
exact and intuitive manner.

It is well known, for example, that the value 0.1 cannot be represented exactly
in the floating point format standardized in IEEE 754∗ —which is the ubiquitous
floating point format. This imperfection leads to the following pawn program to
give a surprising result:

Listing floating point arithmetic example, giving a surprising result

#include <float>

main()

{

new Float: a = 0.0

new Float: b = 1.0

for (new i = 0; i < 10; i++)

a += 0.1

if (a == b)

printf("%f and %f are equal\n", a, b)

else

printf("%f is not the same as %f\n", a, b)

}

The above program is in pawn, but the phenomenon is shared by all languages
that use the IEEE 754 floating point format.† However, if the program were

∗
IEEE 754 implements binary floating point and the value 0.1 is an infinitely recurring fraction

in binary base.

†
I have verified this with a similar program in C, using both the single-precision and double-

precision floating point formats (see section “Resources” for the source code). A tutorial for the

Python language also mentions this pitfall and amplifies that it is “not a bug” in Python.

2 � Introduction

translated to use the fixed point library instead of the floating point library, it
would give the intuitive (and correct!) answer that ten times 0.1 is indeed 1.0.

The above program shows that tiny errors in floating point values can accumulate
to larger, noticeable errors after repeated operations. Sometimes, the intermediate
incorrectness is hidden by extra “guard digits” in internal CPU registers and
rounding in library functions. However, even single operations can cause errors.
From the “Decimal Arithmetic FAQ, Part 1” (see section “Resources”) comes the
following example:

Consider the calculation of a 5% sales tax on an item (such as a $0.70 telephone call),

which is then rounded to the nearest cent. Using double binary floating-point, the result of

$0.70 × 1.05 is 0.73499999999999998667732370449812151491641998291015625; the result

should have been 0.735 (which would be rounded up to $0.74) but instead the rounded

result would be $0.73

Fixed point arithmetic, and especially decimal arithmetic is appropriate for ap-
plications where the precision is important and all numbers lie in a limited range;
commercial and financial applications are a prime example, but graphic/programs
also benefit from fixed point decimal arithmetic.

The fixed point format used in this library uses three decimal digits and stores
the values in two’s complement. This gives a range of -2147483 to +2147482 with
3 digits behind the decimal point. Fixed point arithmetic also goes by the name
“scaled integer” arithmetic. Basically, a fixed point number is the numerator of
a fraction where the denominator is implied. For this library, the denominator is
1000 —therefore, the integer value 12345 stands for 12345

1000
or 12.345.

In rounding behaviour, however, there is a subtle difference between fixed point
arithmetic and straight-forward scaled integer arithmetic: in fixed point arith-
metic, it is usually intended that the least significant digit should be rounded
before any subsequent digits are discarded; but many scaled integer arithmetic
implementations just “drop” any excess digits. In other words, 2/3 in fixed point
arithmetic results in 0.667, which is more accurate than the scaled integer result
of 0.666.

Apart from the decimal arithmetic model (used by this library), there are also fixed
point packages that use a binary model, where the fractional part is specified in the
number of “bits” rather than “digits”. The binary model has significantly different
properties than the decimal model, and it is used for entirely different purposes.
In discussions on fixed point arithmetic (e.g. versus floating-point arithmetic), one
should be careful about the radix of the fixed point format that is discussed. As a
side note, fixed point decimal arithmetic is sometimes (incorrectly) referred to as

Introduction � 3

“BCD” arithmetic —the Binary Coded Decimals format stores one digit in each
nibble (half byte, or four bits). Fixed-point arithmetic and BCD format may be
combined, but the two are not the same. As already noted, this library uses two’s
complement rather than BCD.

4

Implementing the library

The fixed point support library consists of the files fixed.c and fixed.inc. The C
file may be “linked in” to a project that also includes the pawn Abstract Machine
(amx.c), or it may be compiled into a DLL (Microsoft Windows) or a shared
library (Linux). The .inc file contains the definitions for the pawn compiler of
the native functions in fixed.c, as well as several user-defined operators. In your
pawn programs, you may either include this file explicitly, using the #include

preprocessor directive, or add it to the “prefix file” for automatic inclusion into
any pawn program that is compiled.

The fixed.inc also sets the rational number format for the pawn compiler to a
fixed point number with three decimal digits (using #pragma rational). This
may lead to a conflict if a different rational number format was already set. Specif-
ically, you may not be able to use this fixed point extension module together with
a floating point module. Such conflicts can be resolved by removing the #pragma
rational directive from either module.

The “Implementer’s Guide” for the pawn toolkit gives details for implementing
the extension module described in this application note into a host application.
The initialization function, for registering the native functions to an abstract
machine, is amx_FixedInit and the “clean-up” function is amx_FixedCleanup.
In the current implementation, calling the clean-up function is not required.

If the host application supports dynamically loadable extension modules, you may
alternatively compile the C source file as a DLL or shared library. No explicit
initialization or clean-up is then required. Again, see the Implementer’s Guide for
details.

The extension module amxcons.c (console input/output) has some support for
fixed point values. You have to enable this support by compiling the file with the
FIXEDPOINT macro defined.

5

Usage

Depending on the configuration of the pawn compiler, you may need to explicitly
include the fixed.inc definition file. To do so, insert the following line at the top
of each script:

#include <fixed>

The #pragma rational setting in fixed.inc allows you to specify rational literal
numbers directly. For example:

new Fixed: amount = 123.45

amount += 78.90

To convert from integers to fixed point values, use one of the functions fixed

or strfixed. The function fixed creates a fixed point number with the same
integral value as the input value and a fractional part of zero. Function strfixed

makes a fixed point number from a string, which can include a fractional part.

A user-defined assignment operator is implemented to automatically coerce integer
values on the right hand to a fixed point format on the left hand. That is, the
lines:

new a = 10

new Fixed: b = a

are equivalent to:
new a = 10

new Fixed: b = fixed(a)

To convert back from fixed point numbers to integers, use the functions fround
and ffract. Function fround is able to round upwards, to round downwards,
to “truncate” and to round to the nearest integer. Function ffract gives the
fractional part of a fixed point number, but still stores this as a fixed point number.

The common arithmetic operators: +, -, * and / are all valid on fixed point
numbers, as are the comparison operators and the ++ and -- operators. The
modulus operator % is forbidden on fixed point values.

The arithmetic operators also allow integer operands on either left/right hand.
Therefore, you can add an integer to a fixed point number (the result will be
a fixed point number). This also holds for the comparison operators: you can
compare a fixed point number directly to an integer number (the return value will
be true or false).

6

Native functions

fabs Return the absolute value of a fixed point number

Syntax: Fixed: fabs(Fixed: value)

value The value to return the absolute value of.

Returns: The absolute value of the parameter.

fdiv Divide a fixed point number

Syntax: Fixed: fdiv(Fixed: oper1, Fixed: oper2)

oper1 The numerator of the quotient.

oper2 The denominator of the quotient.

Returns: The result: oper1/oper2.

Notes: The user-defined / operator forwards to this function.

See also: fmul

ffract Return the fractional part of a number

Syntax: Fixed: ffract(Fixed: value)

value The number to extract the fractional part of.

Returns: The fractional part of the parameter, in fixed point format. For
example, if the input value is “3.14”, ffract returns “0.14”.

See also: fround

fmuldiv � 7

fixed Convert integer to fixed point

Syntax: Fixed: fixed(value)

value the input value.

Returns: A fixed point number with the same (integral) value as the param-
eter (provided that the integral value is in range).

See also: fround, strfixed

fmul Multiply two fixed point numbers

Syntax: Fixed: fmul(Fixed: oper1, Fixed: oper2)

oper1

oper2 The two operands to multiply.

Returns: The result: oper1 × oper2.

Notes: The user-defined * operator forwards to this function.

See also: fdiv

fmuldiv Fixed point multiply followed by a divide

Syntax: Fixed: fmuldiv(Fixed: oper1, Fixed: oper2,

Fixed: divisor)

oper1

oper2 The two operands to multiply (before the divide).

divisor The value to divide oper1 × oper2 by.

Returns: The result: oper1×oper2
divisor

.

Notes: This function multiplies two fixed point numbers, then divides it by
a third number (“divisor”). It avoids rounding the intermediate
result (the multiplication) to a fixed number of decimals halfway.
Therefore, the result of fmuldiv(a, b, c) may have higher preci-
sion than “(a * b) / c”.

See also: fdiv, fmul

8 � fpower

fpower Raise a fixed point number to a power

Syntax: Fixed: fpower(Fixed: value, exponent)

value The value to raise to a power; this is a fixed point
number.

exponent The exponent is a whole number (integer). The expo-
nent may be zero or negative.

Returns: The result: valueexponent; this is a fixed point value.

Notes: For exponents higher than 2 and fractional values, the fpower func-
tion may have higher precision than repeated multiplication, be-
cause the function tries to calculate with an extra digit. That is,
the result of fpower(3.142, 4) is probably more accurate than
3.142 * 3.142 * 3.142 * 3.142.

See also: fsqroot

fround Round a fixed point number to an integer value

Syntax: fround(Fixed: value,

fround method: method=fround round)

value The value to round.

method The rounding method may be one of:

fround round

round to the nearest integer; a fractional part of
exactly 0.5 rounds upwards (this is the default);

fround floor

round downwards;

fround ceil

round upwards;

fround tozero

round downwards for positive values and up-
wards for negative values (“truncate”);

strfixed � 9

fround unbiased

round to the nearest even integer number when
the fractional part is exactly 0.5 (the values
“1.5” and “2.5” both round to “2”). This is
also known as “Banker’s rounding”.

Returns: The rounded value, as an integer (an untagged cell).

Notes: When rounding negative values upwards or downwards, note that
−2 is considered smaller than −1.

See also: ffract

fsqroot Return the square root of a value

Syntax: Fixed: fsqroot(Fixed: value)

value The value to calculate the square root of.

Returns: The result: the square root of the input number.

Notes: This function raises a “domain” error is the input value is negative.

See also: fpower

strfixed Convert from text (string) to fixed point

Syntax: Fixed: strfixed(const string[])

string The string containing a fixed point number in char-
acters. This may be either a packed or unpacked
string. The string may specify a fractional part, e.g.,
“123.45”.

Returns: The value in the string, or zero if the string did not start with a
valid number.

10

Custom operators

All custom operators are declared “native” or “stock”. Operators that you do not
use in your script take no space in the P-code file.

Fixed:operator*(Fixed:oper1, Fixed:oper2)

Fixed:operator/(Fixed:oper1, Fixed:oper2)

Fixed:operator=(oper)

Fixed:operator++(Fixed:oper)

Fixed:operator−−(Fixed:oper)

Fixed:operator*(Fixed:oper1, oper2) (“*” is commutative)

Fixed:operator/(Fixed:oper1, oper2)

Fixed:operator/(oper1, Fixed:oper2)

Fixed:operator+(Fixed:oper1, oper2) (“+” is commutative)

Fixed:operator−(Fixed:oper1, oper2)

Fixed:operator−(oper1, Fixed:oper2)

bool:operator>(Fixed:oper1, oper2)

bool:operator>(oper1, Fixed:oper2)

bool:operator>=(Fixed:oper1, oper2)

bool:operator>=(oper1, Fixed:oper2)

bool:operator<(Fixed:oper1, oper2)

bool:operator<(oper1, Fixed:oper2)

bool:operator<=(Fixed:oper1, oper2)

bool:operator<=(oper1, Fixed:oper2)

bool:operator==(Fixed:oper1, oper2) (“==” is commutative)

bool:operator!=(Fixed:oper1, oper2) (“!=” is commutative)

11

Resources

The pawn toolkit can be obtained from www.compuphase.com in various for-
mats (binaries and source code archives). The manuals for usage of the language
and implementation guides are also available on the site in Adobe Acrobat format
(PDF files).

The limitations of IEEE 754 floating point arithmetic are well documented, but
not very widely known. An introductory article on the pitfalls of floating point
arithmetic is “The Perils of Floating Point” by Bruce M. Bush, available on
www.lahey.com/float.htm. A more in-depth article, which is the source of
one of the examples in this application note, is IBM’s “Decimal Arithmetic FAQ,
Part 1” at www2.hursley.ibm.com/decimal/decifaq1.html.

The source code in C that demonstrates the limited precision of IEEE 754 floating
point arithmetic (using double precision floating point) is below. See page 1 for
a description of the problem. The “volatile” variable attribute is to avoid
the compiler from “hiding” the error from view: an optimizing C/C++ compiler
may keep the accumulated result in an internal processor register and avoid the
incremental truncation error —a highly optimizing C/C++ compiler might even
detect the pattern and set “a” to 1.0 without looping at all.

Listing floating point surprise, in C

#include <stdio.h>

{

volatile double a = 0.0;

volatile double b = 1.0;

int i;

for (i = 0; i < 10; i++)

a += 0.1;

if (a == b)

printf("%f and %f are equal\n", a, b);

else

printf("%f is not the same as %f\n", a, b);

return 0;

}

12 � Resources

13

Index

⋄ Names of persons (not products) are in italics.
⋄ Function names, constants and compiler reserved words are in typewriter

font.

! #include, 4

#pragma rational, 4, 5

A Absolute value, 6

Abstract Machine, 4

Adobe Acrobat, 11

B Banker’s rounding, 9

Base 10, See Decimal arithmetic

Base 2, See Binary arithmetic

Binary arithmetic, 2

Binary Coded Decimals, 2

Bush, B.M., 11

C cell, 1, 2

Console module, 4

D Decimal arithmetic, 2

DLL, 4

Dropped digits, 2

Dynamically loaded module, 4

E Exponentiation, 8

Extension module, 1, 4

dynamically loaded, 4

F fabs, 6
fdiv, 6
ffract, 5, 6
fixed, 5, 7
Floating point, 1, 2, 11
fmul, 7
fmuldiv, 7
Forbidden operators, 5
fpower, 8
fround, 5, 8
fsqroot, 9

H Host application, 4

I IEEE 754, 1, 11

L Linux, 4
Literal numbers, 5

M Microsoft Windows, 4
Modulus, 5

N Native functions, 4
registering, 4

Nibble, 2

O Operators
forbidden, 5
user-defined, 4, 5, 10

14 � Index

P Precision, 1

Prefix file, 4

Preprocessor directive, 4

Python, 1

R Registering, 4

Rounding, 2

S Scaled integer, 2
Shared library, 4
Square root, 9
strfixed, 5, 9

T Two’s complement, 2

U User-defined operators, 4, 5, 10

	Introduction
	Implementing the library
	Usage
	Native functions
	Custom operators
	Resources
	Index

