embedded scripting language

Process control and Foreign Function Interface

November 2006
Abstract

The “Process control and Foreign Function Interface” ex-
tension module provides functions to launch other pro-
grams and to call functions from DLLs (Microsoft Win-
dows) or shared libraries (UNIX/Linux).

The software that is associated with this application note
can be obtained from the company homepage, see section
“Resources”.

INTRODUCTION .. oot e e e e e 1
Library calls 1
Launching programs ... 1
Security, stability ... 2

IMPLEMENTING THE LIBRARY . ..t tttttnttt ettt e e et et et eee e 3

USAGE .« ettt 4

NATIVE FUNCTIONS . ..ottt et ettt et e e e e e e e e 5

RESOURCES . . .ot e e 10

DN DX .o e 11

ITB CompuPhase

ii

“Microsoft” and “Microsoft Windows” are registered trademarks of Microsoft Corporation.
“Linux” is a registered trademark of Linus Torvalds.

“CompuPhase” is a registered trademark of I'TB CompuPhase.

Copyright (¢©) 20052011, ITB CompuPhase; Eerste Industriestraat 19-21, 1401VL
Bussum, The Netherlands (Pays Bas); telephone: (+31)-(0)35 6939 261
e-mail: info@compuphase.com, WWW: http: //www.compuphase.com

The information in this manual and the associated software are provided “as is”.
There are no guarantees, explicit or implied, that the software and the manual

are accurate.

Requests for corrections and additions to the manual and the software can be
directed to ITB CompuPhase at the above address.

Typeset with TEX in the “Computer Modern” and “Palatino” typefaces at a base size of 11 points.

Introduction

The Process control and Foreign Function Interface module enables PAWN pro-
grams to run executable programs and call functions from libraries. When running
executable programs, the PAWN script can also interact with that program (send
“input”, receive “output”).

This appendix assumes that the reader understands the PAWN language. For
more information on PAWN, please read the manual “The PAWN booklet — The
Language” which is available from the site www.compuphase.com.

Library calls

A PAWN script calls functions that are implemented inside the script itself and it
calls functions that have been specifically registered for use from PAWN. These are
PAWN functions and native functions, respectively. A Foreign Function Interface
allows the PAWN script to call functions in general purpose libraries that do not
adhere to any “PAWN” calling convention. Modern operating systems provide a
large set of “system calls” that reside in pre-compiled libraries —in the Microsoft
Windows world, these are DLLs, or Dynamically Linked Libraries; for UNIX, Linux
and similar operating systems, these are shared libraries.

The Foreign Function Interface, therefore, makes this wealth of functions available
to a PAWN script, but there are several caveats:

¢ Since the “foreign” functions are based on a different machine model than PAWN,
you have to pass additional “bookkeeping” information to the function call.

¢ Calling functions in DLLs and shared libraries breaks the sandbox model of
the PAWN abstract machine. It is very easy to crash an application by sending
invalid parameters to a foreign function.

¢ And there are security & stability issues; see page 2

Launching programs

The extension module supports launching executable programs. If the launched
program is a “console application”, it can also provide input to the launched
program and read its output. The external program sees the input as standard

2 3 Security, stability

console/terminal input, and any text that it writes to standard console/terminal
output is read back by the PAWN script.

In the current version, I/O redirection only works for a single launched program.

Security, stability

The ability launch any program, or to call any function from a system DLL
or shared library may obviously cause the system to become unstable. Passing
the wrong parameters to a program or library function may crash the system
immediately, and it could even damage (system) files.

When the PAWN abstract machine is implemented in an environment where scripts
are automatically loaded from a network connection, it also becomes vulnerable
to sabotage or “malware”.

Implementing the library

The Process control and Foreign Function Interface module consists of this doc-
ument and the files AMXPROCESS.C and PROCESS.INC. The C file may be “linked
in” to a project that also includes the PAWN abstract machine (AMX.C), or it may
be compiled into a DLL (Microsoft Windows) or a shared library (Linux). The
.INC file contains the definitions for the PAWN compiler of the native functions in
AMXPROCESS.C. In your PAWN programs, you may either include this file explic-
itly, using the #include preprocessor directive, or add it to the “prefix file” for
automatic inclusion into any PAWN program that is compiled.

The “Implementer’s Guide” for the PAWN toolkit gives details for implementing
the extension module described in this application note into a host application.
The initialization function, for registering the native functions to an abstract ma-
chine, is amx_ProcessInit and the “clean-up” function is amx_ProcessCleanup.
In the current implementation, calling the clean-up function is not required.

If the host application supports dynamically loadable extension modules, you may
alternatively compile the C source file as a DLL or shared library. No explicit
initialization or clean-up is then required. Again, see the Implementer’s Guide for
details.

When compiling the library under UNIX or Linux, you need the “dyncall” li-
brary. This library can be obtained from http://www.dyncall.org/. When
compiling for Microsoft Windows, you may also need this library, depending on
your compiler. If the dyncall library is absent, the Process control module will
still compile, but it will exclude the support for shared libraries.

Usage

Depending on the configuration of the PAWN compiler, you may need to explicitly
include the PROCESS.INC definition file. To do so, insert the following line at the
top of each script:

#include <process>
The angle brackets “<...>” make sure that you include the definition file from
the system directory, in the case that a file called PROCESS.INC or PROCESS.PAWN
also exists in the current directory.

Native functions

libcall

Syntax:

Returns:

Notes:

Call a function in a library

libcall(const libname[], const funcnamel[],
const typestringl[], ...)

libname The module name or filename of the DLL or of the
shared library. This library is automatically loaded on
first use. The library name look-up is case-sensitive.

funcname The name of the function to call. This must be the
symbol name as it exists in the library, including all
“decorations” added by compilers or linkers.

typestring A string that tells the types of the function parame-
ters, as defined by the foreign function. See the notes
for the syntax.

The values of the foreign parameters.
This function returns the return value of the foreign function.

The typestring format is a string where the types of the param-
eters that follow on the parameter list are represented by tokens.
A token is basically a single letter, but it may be decorated with
attributes. White space is permitted between the tokens, but not
inside each token specification. The string “ii[4]&ul6s” is equiv-
alent to “i i[4] &u16 s” (but it is easier on the eye).

Basic types:

i signed integer, by default 16-bit in Windows 3.x and 32-bit in
Win32 and Linux

u unsigned integer, by default 16-bit in Windows 3.x and 32-bit
in Win32 and Linux
IEEE floating point, 32-bit (single precision)

p packed string

s unpacked string

6 ; libeall

The difference between packed and unpacked strings is only relevant
when the parameter is passed by reference (see below).

Pass-by-value and pass-by-reference:

By default, parameters are passed by value. To pass a parameter
by reference, prefix the type letter with an “&”. For example:

&i a signed integer passed by reference

i a signed integer passed by value

(49

The same applies for “&u” versus “u” and “&f” versus “f”.

Arrays are passed by “copy & copy-back”. That is, 1ibcall allo-
cates a block of dynamic memory to copy the array into. On return
from the foreign function, 1libcall copies the array back to the ab-
stract machine. The net effect is similar to pass by reference, but the
foreign function does not work in the AMX stack directly. During
the copy and the copy-back operations, 1ibcall may also transform
the array elements, for example between 16-bit and 32-bit elements.
This is done because PAWN only supports a single cell size, which
may not fit the required integer size of the foreign function.

See “element ranges” (below) for the syntax of passing an array.

Strings may either be passed by copy, or by “copy & copy-back”.
When the string is an output parameter (for the foreign function),
the size of the array that will hold the return string must be indi-
cated between square brackets behind the type letter (see “element
ranges”, below). When the string is input only, this is not needed
—libcall will determine the length of the input string itself.

The tokens “p” and “s” are equivalent, but “p[10]” and “s[10]”
are not equivalent: the latter syntaxes determine whether the output
from the foreign function will be stored as a packed or an unpacked
string.

Element sizes:

To set the size in bits of a parameter, add an integer behind the
type letter; for example, “i16” indicates a 16-bit signed integer.
Note that the value behind the type letter must be either 8, 16 or
32.

(A%

You should only use element size specifiers on the “i” and “u” types.

Ue?

That is, do not use these specifiers on “f”, “s” and “p”.

libfree 3 7

Element ranges:

For passing arrays, the size of the array should be given behind
the type letter (and the optional element size). The token “u[4]”
indicates an array of four unsigned integers, which are typically 32-
bit. The token “i16[8]” is an array of 8 signed 16-bit integers.
Arrays are always passed by “copy & copy-back”.

When compiled as Unicode, this library converts all strings to Uni-
code strings, prior to calling the foreign function. Unicode functions
should only be used with unpacked strings, since packed strings can
only represent 8-bit character sets.

The calling convention for the foreign functions is assumed to be:
¢ __stdcall for Win32,

o far pascal for Winl6

o and the GCC default for uNIX/Linux (_cdecl)

C*™* name mangling of the called function is not handled (there is
no standard convention for name mangling, so there is no portable
way to convert C*t*1 function names to mangled names). Win32
name mangling (used by default by Microsoft compilers on functions
declared as __stdcall) is also not handled.

See also: libfree

libfree Unload a library from memory

Syntax: bool: libfree(const libname[]="")

libname The module name or filename of the DLL or of the

shared library to remove from memory. If this pa-
rameter is an empty string (the default), all libraries
that have been loaded by the extension module are
removed.

Returns: true on success, false on failure (the function fails on an attempt

to unload a DLL/shared library that was not loaded).

8 ; procezec

Notes:

See also:

Function 1ibcall keeps DLLs or shared libraries in memory after
the first call to a function in it. This speeds up the subsequent calls
to any of the functions in the same library, but it also increases the
memory footprint of the process. You would use 1ibfree to unload
DLLs or shared libraries that the script will not be needing again for
some time. Doing so reduces the memory footprint of the process.
At the next call to 1ibcall, any unloaded library is automatically
loaded again.

libcall

procexec

Syntax:

Returns:

See also:

Launch an external executable program
PID: procexec(const commandline[])

commandline The filename or complete path of the external pro-
gram, including any command line options.

An identifier for the new process (“Process ID”, or PID) on success,
or zero on failure.

procread, procwait, procwrite

procread

Syntax:

Returns:

See also:

Read output of the external program

bool: procread(line[], size=sizeof line,
bool: striplf=false, bool: packed=false)

line This parameter will contain the output of the external
program (the text that the external program wrote to
“standard out”).

size The size of parameter line parameter, in cells.

striplf If true, and terminating newline and carriage return
characters are stripped from parameter line.

packed If true, the returned text is stored in parameter line
as a packed string; otherwise the string is unpacked.

true on success, false on failure.

procexec, procwrite

procwrite 3 9

procwait Wait until an executable program finishes
Syntax: PID: procwait(PID: pid)
pid The Process ID of the program on which you wish to
wait. This value is returned by procexec.
Returns: This function currently always returns zero.
See also: procexec
procwrite Send “input” to the external program
Syntax: bool: procwrite(const line[], bool: appendlf=false)
line The text to send to the external program.
appendlf If true, a newline character is automatically appended
to text that is sent.
Returns: true on success, false on failure.
See also: procexec, procread

10

Resources

The PAWN toolkit can be obtained from www.compuphase.com in various for-
mats (binaries and source code archives). The manuals for usage of the language
and implementation guides are also available on the site in Adobe Acrobat format
(PDF files).

The dyncall library is available at http://www.dyncall.org/.

11

Index

o Names of persons (not products) are in italics.
¢ Function names, constants and compiler reserved words are in typewriter
font.

#include, 3 M Microsoft Windows, 3

N Native functions, 3

Abstract Machine, 3 . .
registering, 3

Adobe Acrobat, 10

P pp, 8
DLL, 3 Prefix file, 3
dyncall, 3, 10 Preprocessor directive, 3
procexec, 8
Foreign Function Interface, 1 procread, 8

procwait, 9
procwrite, 9

Host application, 3

Registering, 3

libcall, 5
libfree, 7 S Security, 2
Linux, 3 Shared library, 3

	Introduction
	Library calls
	Launching programs
	Security, stability

	Implementing the library
	Usage
	Native functions
	Resources
	Index

