
Pawn

embedded scripting language

Time Functions Library

August 2007

Abstract
The “Time Functions Library” adds a set of general pur-
pose functions to the pawn scripting language. The library
provides an interface to standard “time of the day” as well
as a millisecond-resolution timer.

The software that is associated with this application note
can be obtained from the company homepage, see section
“Resources”

Introduction . 1

Implementing the library . 2

Usage .3

Public functions . 4

Native functions . 5

Resources .10

Index . 11

ITB CompuPhase

ii

“CompuPhase” is a registered trademark of ITB CompuPhase.

“Linux” is a registered trademark of Linus Torvalds.

“Microsoft” and “Microsoft Windows” are registered trademarks of Microsoft Corporation.

Copyright c© 2005–2011, ITB CompuPhase; Eerste Industriestraat 19–21, 1401VL
Bussum, The Netherlands (Pays Bas); telephone: (+31)-(0)35 6939 261
e-mail: info@compuphase.com, WWW: http://www.compuphase.com

The information in this manual and the associated software are provided “as is”.
There are no guarantees, explicit or implied, that the software and the manual
are accurate.

Requests for corrections and additions to the manual and the software can be
directed to ITB CompuPhase at the above address.

Typeset with TEX in the “Computer Modern” and “Palatino” typefaces at a base size of 11 points.

1

Introduction

The “pawn” programming language depends on a host application to provide an
interface to the operating system and/or to the functionality of the application.
This interface takes the form of “native functions”, a means by which a pawn

script calls into the application. The pawn “core” toolkit mandates or defines no
native functions at all (the tutorial section in the manual uses only a minimal set
of native functions in its examples). In essence, pawn is a bare language to which
an application-specific library must be added.

That non-withstanding, the availability of general purpose native-function li-
braries is desirable. The “Time Functions Library” discussed in this document
intends to be such a general-purpose module.

This application note assumes that the reader understands the pawn language.
For more information on pawn, please read the manual “The pawn booklet —
The Language” which is available from the company homepage.

2

Implementing the library

The “Time Functions Library” consists of the two files amxtime.c and time.inc.
The C file may be “linked in” to a project that also includes the pawn abstract
machine (amx.c), or it may be compiled into a DLL (Microsoft Windows) or
a shared library (Linux). The .inc file contains the definitions for the pawn

compiler of the native functions in amxtime.c. In your pawn programs, you may
either include this file explicitly, using the #include preprocessor directive, or
add it to the “prefix file” for automatic inclusion into any pawn program that is
compiled.

The “Implementer’s Guide” for the pawn toolkit gives details for implementing
the extension module described in this application note into a host application.
The initialization function, for registering the native functions to an abstract
machine, is amx_TimeInit and the “clean-up” function is amx_TimeCleanup. In
the current implementation, calling the clean-up function is not required.

If the host application supports dynamically loadable extension modules, you may
alternatively compile the C source file as a DLL or shared library. No explicit
initialization or clean-up is then required. Again, see the Implementer’s Guide for
details.

3

Usage

Depending on the configuration of the pawn compiler, you may need to explicitly
include the time.inc definition file. To do so, insert the following line at the top
of each script:

#include <time>

The angle brackets “<...>” make sure that you include the definition file from
the system directory, in the case that a file called time.inc or time.p also exists
in the current directory.

From that point on, the native functions from the file I/O support library are
available.

The settimer function sets up the interval (or the delay for a one-shot timer) for
the @timer callback function. To get a time event, the script must implement the
@timer callback function and configure the timer with settimer.

An event-driven program that prints a period (“.”) every second is:

Listing: event-driven program to print a dot each second

#include <time>

main()

settimer 1000 /* interval is in milliseconds */

@timer()

print "."

For comparison, below is a flow-driven program that does the same thing. It needs
two loops: an inner loop to check for overflowing a second and an outer loop to
continue printing dots after each second lapse. The program below is designed for
purpose of demonstration, instead of timing quality. As it is, it is prone to timer
drift. The event-driven alternative above is more accurate.

Listing: flow-driven program to print a dot each second

#include <time>

main()

{

for (;;)

{

new stamp = tickcount()

while (tickcount() - stamp < 1000)

{}

print "."

}

}

4

Public functions

@timer A timer event occurred

Syntax: @timer()

Returns: The return value of this function is currently ignored.

Notes: This function executes after the delay/interval set with settimer.
Depending on the timing precision of the host, the call may occur
later than the delay that was set.

If the timer was set as a “single-shot”, it must be explicitly set again
for a next execution for the @timer function. If the timer is set to
be repetitive, @timer will continue to be called with the set interval
until it is disabled with another call to settimer.

See also: delay, settimer

5

Native functions

cvttimestamp Convert a timestamp into a date and time

Syntax: cvttimestamp(seconds1970, &year=0, &month=0, &day=0,

&hour=0, &minute=0, &second=0)

year This will hold the year upon return.

month This will hold the month (1–12) upon return.

day This will hold the day of (1–31) the month upon re-
turn.

hour This will hold the hour (0–23) upon return.

minute This will hold the minute (0–59) upon return.

second This will hold the second (0–59) upon return.

Returns: This function always returns 0.

Notes: Some file and system functions return timestamps as the number
of seconds since midnight, 1 January 1970, which is the start of
the unix system epoch. This function allows to convert these time
stamps into date and time fields.

See also: gettime, getdate, settimestamp

delay Halts execution a number of milliseconds

Syntax: delay(milliseconds)

milliseconds

The delay, in milliseconds.

Returns: This function currently always returns zero.

6 � getdate

Notes: On some platforms, the sleep instruction also delays for a given
number of milliseconds. The difference between the sleep instruc-
tion and the delay function is that the delay function does not
yield events and the sleep instruction typically yields. When yield-
ing events is, any pending events are handled. As a result, the delay
function waits without handling any pending events and the sleep

instruction waits and deals with events.

See also: tickcount

getdate Return the current (local) date

Syntax: getdate(&year=0, &month=0, &day=0)

year This will hold the year upon return.

month This will hold the month (1–12) upon return.

day This will hold the day of (1–31) the month upon re-
turn.

Returns: The return value is the number of days since the start of the year.
January 1 is day 1 of the year.

See also: gettime, setdate

gettime Return the current (local) time

Syntax: gettime(&hour=0, &minute=0, &second=0)

hour This will hold the hour (0–23) upon return.

minute This will hold the minute (0–59) upon return.

second This will hold the second (0–59) upon return.

Returns: The return value is the number of seconds since midnight, 1 January
1970: the start of the unix system epoch.

See also: getdate, settime

settime � 7

setdate Set the system date

Syntax: setdate(year=cellmin, month=cellmin, day=cellmin)

year The year to set; if this parameter is kept at its default
value (“cellmin”) it is ignored.

month The month to set; if this parameter is kept at its de-
fault value (“cellmin”) it is ignored.

day The month to set; if this parameter is kept at its de-
fault value (“cellmin”) it is ignored.

Returns: This function always returns 0.

The date fields are kept in a valid range. For example, when setting
the month to 13, it wraps back to 1.

See also: getdate, settime, settimestamp

settime Set the system time

Syntax: settime(hour=cellmin, minute=cellmin,

second=cellmin)

hour The hour to set, in the range 0–23; if this parameter
is kept at its default value (“cellmin”) it is ignored.

minute The minute to set, in the range 0–59; if this parameter
is kept at its default value (“cellmin”) it is ignored.

second The second to set, in the range 0–59; if this parameter
is kept at its default value (“cellmin”) it is ignored.

Returns: This function always returns 0.

The time fields are kept in a valid range. For example, when setting
the hour to 24, it wraps back to 23.

See also: gettime, setdate, settimestamp

8 � settimer

settimer Configure the event timer

Syntax: settimer(milliseconds, bool: singleshot=false)

milliseconds

The number of milliseconds to wait before calling the
@timer callback function. Of the timer is repetitive,
this is the interval. When this parameter is 0 (zero),
the timer is shut off.

singleshot If false, the timer is a repetitive timer; if true the
timer is shut off after invoking the @timer event once.

Returns: This function always returns 0.

Notes: See the chapter “Usage” for an example of this function, and the
@timer event function.

See also: @timer, tickcount

settimestamp Sets the date and time with a single value

Syntax: settimestamp(seconds1970)

seconds1970

The number of seconds that have elapsed since mid-
night, 1 January 1970. This particular date, 1 January
1970, is the “unix system epoch”.

Returns: This function always returns 0.

Notes: The function getdate returns the number of seconds since 1 January
1970.

See also: getdate, setdate, settime

tickcount � 9

tickcount Return the current tick count

Syntax: tickcount(&granularity=0)

granularityUpon return, this value contains the number of ticks
that the internal system time will tick per second.
This value therefore indicates the accuracy of the re-
turn value of this function.

Returns: The number of milliseconds since start-up of the system. For a 32-bit
cell, this count overflows after approximately 24 days of continuous
operation.

Notes: If the granularity of the system timer is “100” (a typical value for
unix systems), the return value will still be in milliseconds, but the
value will change only every 10 milliseconds (100 “ticks” per second
is 10 milliseconds per tick).

This function will return the time stamp regardless of whether a
timer was set up with settimer.

See also: settimer

10

Resources

The pawn toolkit can be obtained from www.compuphase.com in various for-
mats (binaries and source code archives). The manuals for usage of the language
and implementation guides are also available on the site in Adobe Acrobat format
(PDF files).

11

Index

⋄ Names of persons (not products) are in italics.
⋄ Function names, constants and compiler reserved words are in typewriter

font.

! #include, 2
@timer, 4

A Abstract Machine, 2
Adobe Acrobat, 10

C cvttimestamp, 5

D delay, 5
DLL, 2

E Event-driven programming, 3, 6

F Flow-driven programming model, 3

G getdate, 6
gettime, 6

H Host application, 2

L Linux, 2

M Microsoft Windows, 2

N Native functions, 2
registering, 2

P Prefix file, 2
Preprocessor directive, 2

R Registering, 2

S setdate, 7
settime, 7
settimer, 8
settimestamp, 8
Shared library, 2
sleep, 6

T tickcount, 9

U UNIX epoch, 5, 6, 8

Y Yielding events, 6

	Introduction
	Implementing the library
	Usage
	Public functions
	Native functions
	Resources
	Index

