
Pawn

embedded scripting language

Remote debugging interface

May 2010

Contents

Introduction . 1

Creating the the debugger hook “stub” . 2

Set-up and handshake .2
Overall operation . 3
Command overview . 4
Transferring registers . 5
Transferring memory .5
End of a debug session .6

Advanced commands . 7

Writing memory . 7
Transferring files .7
Deleting and listing files . 9
Changing the baud rate .10

Usage: Setting up a remote debugging session .11

Resources .12

Index . 13

ITB CompuPhase

ii

“CompuPhase” is a registered trademark of ITB CompuPhase.

“Linux” is a registered trademark of Linus Torvalds.

“Microsoft” and “Microsoft Windows” are registered trademarks of Microsoft Corporation.

Copyright c© 2009–2011, ITB CompuPhase; Eerste Industriestraat 19–21, 1401VL
Bussum, The Netherlands (Pays Bas); telephone: (+31)-(0)35 6939 261
e-mail: info@compuphase.com, WWW: http://www.compuphase.com

The information in this manual and the associated software are provided “as is”.
There are no guarantees, explicit or implied, that the software and the manual
are accurate.

Requests for corrections and additions to the manual and the software can be
directed to ITB CompuPhase at the above address.

Typeset with TEX in the “Computer Modern” and “Palatino” typefaces at a base size of 11 points.

1

Introduction

When debugging script on the same machine as the debugger, the pawn abstract
machine invokes a “debug hook” function directly inside the debugger. Synchro-
nization is usually not an issue, because the script blocks on the debug hook
function to return: the hook function is called on the same task or thread as that
the abstract machine runs. The debugger also has direct access to the code and
data of the running script, as they run on the same machine and usually in the
same process.

Remote debugging adds two stubs and a protocol to the picture. The abstract
machine still calls into a debug hook function, but this function is a stub that
sends all events over a communication line. The debugger is not invoked from the
abstract machine directly, but from another stub, which receives its signals from
the remote host. A communication line, such as an RS232 line, connects the two
stubs.

The pawn debugger already contains a stub for remote debugging over a serial
line. To add remote debugging, we therefore need to implement a stub for the
remote host that conforms to the protocol that the pawn debugger uses.

The terminology used in this application note is that the “remote host” is the
platform that runs the pawn script, and the “local host” the the platform (a PC)
that runs the debugger. Both sides have the pawn abstract machine, but only
the remote host runs the script.

2

Creating the the debugger hook “stub”

Set-up and handshake

Setting up a debugger hook stub on the remote host takes the same steps as for
the case of local debugging, but before going forward with it: you may want to
check that 1) the script contains debug information and 2) that a debugger is
trying to connect.

To test whether a script contains debug information, call function amx_Flags after
amx_Init. If the script has debug information, proceed with the following step
(checking for a debugger at the local host); if not, you will probably want to run
the script without debug hook.

The reason for checking for a debugger at the local host is that the abstract
machine blocks on the the debug hook (upon encountering a break instruction).
The script does not continue until the debug hook returns. The hook function
itself sends the event to the local host and waits for the reply of the debugger. If
no debugger is present at the local host, though, the script will just hang after
dropping on its first break instruction.

To avoid this, the pawn debugger sends a handshake character over the serial line
until it gets a response. The remote host should set up a serial connection, and
enter a polling loop with a time-out. If it receives the handshake character within
the time-out period, it replies with its own handshake and proceeds installing the
debug hook. If it does not receive the handshake character, it should probably
just run the script without setting up a debug hook. The suggested time-out is
three seconds.

The handshake character of the current version of the pawn debugger is the
inverted exclamation mark (“¡”, ascii A1h). Previous versions of the pawn de-
bugger used the standard exclamation mark (“!”, ascii 21h), but this is also a
special character during normal operation of a debug session. On reception of the
“¡”, the remote device installs a debug hook stub function, and starts running
the script. The pawn debugger waits for the first response from this debug hook
stub. If, for any reason, the script cannot run, but the remote device still wants
to communicate with the pawn debugger, it should reply to the “¡” by sending
the commercial “at” sign (“@”, ascii 40h), and then enter a state where it can
parse the commands that the pawn debugger sends.

Overall operation � 3

To install a debug hook, call function amx_SetDebugHook after amx_Init and be-
fore amx_Exec. For example, if the debug hook function will be called DebugStub,
you could add the following line after the call to amx_Init:

err = amx_SetDebugHook(&amx, DebugStub);

The remote host now has to contain a function called DebugStub, with the fol-
lowing definition:

int AMXAPI DebugStub(AMX *amx)

{

/* forward events and handle requests */

}

The interesting parts is, of course, what happens between the braces of the De-

bugStub function.

Overall operation

The debug hook function in the remote host is called from the abstract machine,
each time that this abstract machine drops on a break instruction. The tasks of
the debug function are to send a signal to the debugger (at the local host) and to
then handle any commands that the debugger wants to carry out on the remote
host.

The signal to the remote host is a “@” character followed by the code address and
a newline. The code address is in the cip field of the AMX structure passed to the
debug hook. The code address must be in hexadecimal format. For example, the
string to send could be created with the C code:

char str[128];

sprintf(str, "@%x\n", amx->cip);

After sending the string, the debug hook function must enter a loop and wait until
it receives the character “!” (ascii 21h). This character indicates that the script
must continue to run, until the next break instruction. Upon reception of the
“!” character, the debug hook function returns AMX_ERR_NONE. If the debugger
is in “run” mode, it will immediately reply to any incomping signal with a “!”,
therefore instructing the remote host to continue without delay.

The debug hook can receive other commands from the debugger. These start with
a question mark (“?”), followed by an upper case letter, parameters, and end with
a newline (ascii 0Ah). The debug hook may also receive a stray “¡” character

4 � Command overview

(ascii A1h), which was still in the queue from the handshake procedure —this
character should simply be ignored.

A fairly minimal template for the debug hook function is below. In this function,
it is assumed that there exist the functions send_rs232 and recv_rs232, which
have as parameters a character buffer and the number of characters to send or
receive respectively.

Listing: Template debug hook function

int AMXAPI DebugStub(AMX *amx)

{

char str[128];

int idx;

sprintf(str, "@%x\n", amx->cip);

send˙rs232(str, strlen(str));

for (;;) {

recv˙rs232(str, 1);

switch (str[0]) {

case ’!’:

return AMX_ERR_NONE;

case ’?’:

for (idx = 1; str[idx - 1] != ’\n’; idx++)

recv˙rs232(str + idx, 1);

str[idx] = ’\0’; /* zero-terminate, for convenience */

/* now handle the commands */

break;

} /* switch */

} /* for */

}

Command overview

The remaining part, now is to handle the commands. The table of commands
that the debugger sends to the remote host is:

B value Set baud rate
G name Transfer file to the local host (“get”)
L directory List files on the remote host
M address,size Transfer memory contents
P size,name Transfer file to the remote host (“put”)
R Transfer registers FRM, STK and HEA
T time stamp Synchronizes the time of the remote host
U Unhook, with optional reset

Transferring memory � 5

W address,data Write memory

Only three commands are mandatory for the pawn debugger: “M”, “R” and “U”.
I recommend that a remote host responds with “@0\n” (where “\n” stands for
a newline character) to any unknown command, as to avoid that the debugger
waits for an answer with a time-out.

All values transferred between the debugger and the debug hook function are in
hexadecimal format, but without any prefixes. As stated earlier, every command
ends with a newline character (ascii 0Ah).

Transferring registers

If the debugger is in stepping mode, it first sends the “R” command (meaning
that it sends the string “?R” (plus a newline character). It expects as the return
value from the remote host, a string starting with an “@” and followed with
the values of the registers frm, stk and hea. These are registers of the pawn

abstract machine, and they can be read from the AMX structure that the debug
hook received. For example, you can create this string with the C code:

char str[128];

sprintf(str, "@%x,%x,%x\n", amx->frm, amx->stk, amx->hea);

command reply

?R @frm,stk,hea

Transferring memory

The “M” command has two parameters: the start address to read memory from
and the number of cells to return. The debugger hook must return a single string
that holds the values (in hexadecimal), separated by commas. The string must
start with an “@” and end with a newline. So, if three cells were requested, the
reply string would have the form “@1234,9af,17” (plus a newline character). In
its current implementation, the debugger asks for a maximum of 10 values with
the “M” command. With 32-bit cells, the required minimal string length is 92
bytes (max. 10 values of max. 8 hexadecimal digits, with 9 commas separating the
values, the “@” prefix, a newline and, for convenience, a terminating zero byte).

command reply

?Maddress,size @value,value,. . .

6 � End of a debug session

The address on the “M” command is relative to the data section of the abstract
machine. To convert this address into a pointer to physical memory, you can use
a function like the one below:

Listing: Translate virtual addresses to physical memory addresses

static cell *VirtAddressToPhys(AMX *amx, cell amx_addr)

{

AMX_HEADER *hdr = (AMX_HEADER *)amx->base;

unsigned char *data = amx->data ? amx->data : amx->base+(int)hdr->dat;

if (amx_addr >= amx->hea && amx_addr < amx->stk

|| amx_addr < 0

|| amx_addr >= amx->stp)

return NULL;

return (cell *)(data + (int)amx_addr);

}

The function tests whether the code and data sections of the abstract machine
are combined or separate (for example, if the code runs from ROM and the data
is in RAM, both sections are separate), and it also checks whether the address is
valid: either in the data section, or in the valid portion of the stack or the heap.
The return value is a pointer to the cell whose “virtual” address was passed.

End of a debug session

The “U” command instructs the debug hook to unhook itself, so that the script
continues running without debugger. If the “U” is followed by a “*”, the remote
host should be reset. It is up to the remote host to decide to what degree the sys-
tem should reset. In any case, the “U” command indicates the end of a debugging
session. There is no reply to this command.

command reply

?U

?U*

7

Advanced commands

The previous chapter covered the essential commands for a debug hook: when
these commands are not present, the pawn debugger does not function well.
Some of the remaining commands are more complex, others fall outside the scope
of the pawn debugger (these commands are used by some utilities, but they are
not used by the current version of the debugger.

Writing memory

The “W” command does the inverse of the “M” command. This command con-
tains a list of values that it wants the debug hook to store in the data section
of the abstract machine, at the given address. The debugger will only send this
command after a user request. Typically, the user has entered a command in the
debugger to adjust the value of a variable.

The parameters of the “W” command are the start address, relative to the data
section of the abstract machine, followed by a list of values. The values are
separated with commas (and in hexadecimal). The list ends with a newline.

The address is relative to the data section of the abstract machine. The remote
host needs to convert this address to a pointer to physical memory —for example,
using the VirtAddressToPhys function presented at page 6.

The debug hook should reply with the string “@1” (plus a newline character) for
success and “@0” for failure.
command reply

?Waddress,value,. . . @1

Transferring files

There are two commands for transferring files: one to “get” a file from the remote
host and one to “put” a file onto the remote host. Both transfers use a simple
protocol, where the file data is sent in blocks and each block is acknowledged with
a simple checksum. The block size must be negotiated at the start of the transfer.

The pawn debugger only uses the “P” command (for “put”), for storing a com-
piled script onto the remote host —e.g. before starting to debug it. The transfer
in the opposite direction, the “G” command, is not used in the current version of
the pawn debugger.

8 � Transferring files

• “Put” a file

The parameters of the “P” command are the file size (the number of bytes that
will be transferred) and the filename. The filename is optional; if the debugger
does not send a filename, the remote host may use a fixed (default) filename, or
a temporary filename.

The reply of the “P” command carries the block size that the debugger should
use to send the data (like all numbers in the debugger interface, this value is in
hexadecimal). For example, if the remote host replies with @100, the debugger
will transfer the file in blocks of 256 bytes of binary data. The remote host
acknowledges each received block by sending a checksum.

Each block starts with a single-byte “start code”. This code is either an ack

(ascii 06h) or a nak (ascii 15h). If the debugger sends an ack, the block that
follows is the next sequential block of data for the file. If it sends a nak, the block
that follows is a repeated send of the preceding block. The basic walk-through of
the transfer is: after sending the “P” command and receiving the block size, the
debugger sends an ack and the first block of data from the file. The debugger
hook in the remote host receives the data and replies with the checksum. The
debugger compares the received checksum with the one it computed itself. If it
matches, it sends an ack plus the next block of data; if it mismatches, it sends a
nak and retransmits the previous block.

The checksum is the “Internet checksum”, but as an 8-bit variant. This checksum
is often called the “one’s complement”, because it wraps the carry around on
overflow. Below is an example function to calculate the checksum (for blocks
smaller then 4 MiB); the first loop adds all bytes in a buffer together and the
second loop adds back any overflow.

Listing: Checksum calculation

unsigned char checksum(const unsigned char *buffer, size_t size)

{

unsigned long chksum = 1;

size_t i;

for (i = 0; i < size; i++)

chksum += buffer[i];

while (chksum > 0xff)

chksum = (chksum & 0xff) + (chksum >> 8);

return (unsigned char)chksum;

}

Deleting and listing files � 9

• “Get” a file

The pawn debugger does not currently use the “G” command. This command
(and a few others) are intended for file synchronization utilities (on remote hosts
that implement a file system). Notwithstanding this, I will refer to the utility
running on the local host as “the debugger” in this section.

The debugger sends the “G” command, followed by the filename. The remote
host replies with the file size and the block size.

command reply

?Gfilename @filesize,blocksize

After receiving the file size and the block size, the debugger acknowledges it by
sending a dummy checksum with the value 1 (the complete reply is “@1” followed
by a newline character), after which the remote host sends a start code and the
first block of data (for the first block, the start code is always an ack, ascii 06h).
After receiving each block, the debugger responds with the checksum. The remote
host verifies the checksum and either sends an ack followed by the next block
of data, or sends a nak (ascii 15h) followed by a retransmission of the previous
block of data.

Deleting and listing files

File deletion is a special case of the “G” command (see the section “Transferring
files”) and transferring the file list (directory) is done with the “L” command.
The “G” and “L” commands are not used in the debugger; these commands are
intended for file synchronization utilities.

To delete a file, the debugger sends the “G” command, followed by an asterisk
and the filename. The remote host then removes the file and replies with “@1”
(for success) or “@0” for failure. No further handshaking occurs and no data is
transferred.
command reply

?G*filename @1

The “L” command optionally specifies a directory name or path, and/or wildcard
characters. Whether directories and wildcards are supported depends on the
remote host. The remote host replies with zero or more file records and ends with
a string that contains only an “@” character (plus a newline character).

10 � Changing the baud rate

command reply

?Lpath @size,time,filename

@

The first field on each record is the file size, which is set to -1 for a directory. The
second field is the time stamp for the file, as seconds since midnight January 1,
1970 (the unix time standard). The last field is the name of the file/directory.

The remote host simply sends record after record; the debugger does not acknowl-
edge reception of records.

Changing the baud rate

The parameter of the “B” command is the new baud rate value (in hexadecimal).
The remote host does not reply to this command. However, after the local host
and the remote host have both changed their baud rates, the handshake procedure
(see page 2) must be restarted.

Note that if a session ends the the “?U” command (no reset), the remote host will
typically keep the baud rate. If the session ends with “?U*”, however, the baud
rate should reset to its default value. See page 6 for more on the “U” command.

11

Usage: Setting up a remote debugging session

On the remote host, the compiled script must be present. The script must ob-
viously be compiled with full debugging information. On the local machine, this
same compiled script must also be present, plus the source code of the script. The
reason that the compiled script must be present on both the local and the remote
hosts is that the debugger parses the local file for the symbolic information.

To start the pawn debugger for remote debugging, you need to add the option
“-rs232” to the command line. This option has two parameters that you may
add: the port number and the Baud rate.

Port numbers start at 1 for Microsoft Windows, where “1” stands for COM1.
Under Linux, port numbers start at 0, where “0” stands for /dev/ttyS0. The
default port is 1 for Microsoft Windows and 0 for Linux. To select another port,
use the syntax “-rs232=2”.

The default Baud rate for the debugger is 57600 bps. If the remote host uses
a different bad rate for communication, that rate must be specified on the com-
mand line, as the second parameter of the “-rs232” option. To specify COM1
(on Microsoft Windows) at 9600 bps, add the option “-rs232=1,9600” on the
command line.

12

Resources

The pawn toolkit can be obtained from www.compuphase.com in various for-
mats (binaries and source code archives). The manuals for usage of the language
and implementation guides are also available on the site in Adobe Acrobat format
(PDF files).

13

Index

⋄ Names of persons (not products) are in italics.
⋄ Function names, constants and compiler reserved words are in typewriter

font.

A Adobe Acrobat, 12
amx Exec, 2
amx Init, 2
amx SetDebugHook, 2

B Baud rate, 10, 11

C Checksum, 8
COM port, See RS232 port
Commands (protocol), 4

D Delete (files), 9

F File

~ deletion, 9
list ~, 9

~ transfer, 7

H Handshake, 2, 10
Hexadecimal, 3, 5

L List files, 9

N newline character, 2, 3, 5
Number format, 5

P Port number, 11

R RS232 port, 11

T Time-out, 2, 5
Transfer files, 7

V Virtual address, 6

	Introduction
	Creating the the debugger hook "stub"
	Set-up and handshake
	Overall operation
	Command overview
	Transferring registers
	Transferring memory
	End of a debug session

	Advanced commands
	Writing memory
	Transferring files
	"Put" a file
	"Get" a file

	Deleting and listing files
	Changing the baud rate

	Usage: Setting up a remote debugging session
	Resources
	Index

